elektronika telekomunikasi

1. Induktansi
Induktansi adalah karakteristik rangkaian listrik atau komponen yang menyebabkan timbulnya ggl di dalam rangkaian. Karena perubahan arus yang melewati rangkaian (self inductance) atau perubahan arus yang melewati rangkaian tetangga yang dihubungkan secara magnetis (induktansi bersama atau mutual inductance). Pada keadaan tersebut, perubahan arus berarti ada perubahan medan magnetik, yang kemudian menghasilkan ggl. Apabila sebuah kumparan dialiri arus, di dalam kumparan tersebut akan timbul medan magnetik. Apabila arus yang mengalir besarnya berubah terhadap waktu akan menghasilkan fluks magnetik yang berubah terhadap waktu. Perubahan fluks magnetik ini dapat menginduksi rangkaian itu sendiri, sehingga di dalamnya timbul ggl induksi. GGL induksi yang diakibatkan oleh perubahan fluks magnetik sendiri dinamakan ggl induksi diri.

2. Induktansi Diri (GGL) Induksi Pada Kumparan

Apabila arus berubah melewati suatu kumparan atau solenoida, terjadi perubahan fluks magnetik di dalam kumparan yang akan menginduksi ggl pada arah yang berlawanan.
GGL terinduksi ini berlawanan arah dengan perubahan fluks. Jika arus yang melalui kumparan meningkat, kenaikan fluks magnet akan menginduksi ggl dengan arah arus yang berlawanan dan cenderung untuk memperlambat kenaikan arus tersebut. Dapat disimpulkan bahwa ggl induksi ε sebanding dengan laju perubahan arus yang dirumuskan :


dengan I merupakan arus sesaat, dan tanda negatif menunjukkan bahwa ggl yang dihasilkan berlawanan dengan perubahan arus. Konstanta kesebandingan L disebut induktansi diri atau induktansi kumparan, yang memiliki satuan henry (H), yang didefinisikan sebagai satuan untuk menyatakan besarnya induktansi suatu rangkaian tertutup yang menghasilkan ggl satu volt bila arus listrik di dalam rangkaian berubah secara seragam dengan laju satu ampere per detik.

3. Induktansi Diri pada Solenoida dan Toroida
Solenoida merupakan kumparan kawat yang terlilit pada suatu pembentuk silinder. Pada kumparan ini panjang pembentuk melebihi garis tengahnya. Bila arus dilewatkan melalui kumparan, suatu medan magnetik akan dihasilkan di dalam kumparan sejajar dengan sumbu.

Toroida adalah solenoida yang dilengkungkan sehingga sumbunya menjadi berbentuk lingkaran. Induktor adalah sebuah kumparan yang memiliki induktansi diri L yang signifikan.

Induktansi diri L sebuah solenoida dapat ditentukan dengan menggunakan persamaan 4 pada induksi elektromagnetik. Medan magnet di dalam solenoida adalah:

B = μ .n.I

dengan n = N/l,  diperoleh:

karena ΦB = B.A = μ0.N.I.A / l, Perubahan I akan menimbulkan perubahan fluks sebesar :
Sehingga:
4. Energi yang Tersimpan pada Induktor


Energi yang tersimpan dalam induktor (kumparan) tersimpan dalam bentuk medan magnetik. Energi U yang tersimpan di dalam sebuah induktansi L yang dilewati arus I, adalah:

U = ½  LI2 

Energi pada induktor tersebut tersimpan dalam medan magnetiknya. besar induktansi solenoida setara dengan B = μ0.N2.A/l, dan medan magnet di dalam solenoida berhubungan dengan kuat arus I dengan B = μ0.N.I/l, Jadi,

I = B. l / μ0.N


Apabila dua kumparan saling berdekatan, seperti pada Gambar 4, maka sebuah arus tetap I di dalam sebuah kumparan akan menghasilkan sebuah fluks magnetik Φ yang mengitari kumparan lainnya, dan menginduksi ggl pada kumparan tersebut.


Berdasarkan Hukum Faraday, besar ggl ε2 yang diinduksi ke kumparan tersebut berbanding lurus dengan laju perubahan fluks yang melewatinya. Karena fluks berbanding lurus dengan kumparan 1, maka ε2 harus sebanding dengan laju perubahan arus pada kumparan 1, dapat dinyatakan:
Dengan M adalah konstanta pembanding yang disebut induktansi bersama. Nilai M tergantung pada ukuran kumparan, jumlah lilitan, dan jarak pisahnya.

Induktansi bersama mempunyai satuan henry (H), untuk mengenang fisikawan asal AS, Joseph Henry (1797 - 1878). Pada situasi yang berbeda, jika perubahan arus kumparan 2 menginduksi ggl pada kumparan 1, maka konstanta pembanding akan bernilai sama, yaitu


Induktansi bersama diterapkan dalam transformator, dengan memaksimalkan hubungan antara kumparan primer dan sekunder sehingga hampir seluruh garis fluks melewati kedua kumparan tersebut. Contoh lainnya diterapkan pada beberapa jenis pemacu jantung, untuk menjaga kestabilan aliran darah pada jantung pasien.
Ketika pengguna telepon berbicara, getaran suara akan mengubah kepadatan karbon di belakang membran. Arus listrik yang terus-menerus berubah-ubah berjalan sepanjang bentangan kawat telepon menuju pengeras suara pada pesawat telepon lawan bicara. Pengeras suara mengubah sinyal listrik menjadi suara, di dalamnya terdapat magnet permanen dan elektromagnet. Elektromagnet juga berubah-ubah seirama dengan perubahan arus listrik. Interaksi antara magnet dengan permanen dengan medan magnet elektromagnetik, menghasilkan getaran membran pada pengeras suara. Getaran membran ini yang akan menghasilkan suara yang sama dengan suara pengirim.


Radio Penerima AM

Rangkaian radio AM terdiri dari tuner, penguat IF, detektor, penguat AF dan speaker. Tuner terdiri dari penguat frekuensi tinggi (RF), mixer dan osilator lokal. Transistor Q1 berkaitan dengan sinyal masukan bertindak sebagai penguat frekuensi tinggi, juga sebagai penguat osilator lokal sekaligus berfungsi sebagai mixer. Mixer berfungsi mencampur sinyal masukan frekuensi tinggi dari pemancar (fs) dan sinyal frekuensi tinggi yang dihasilkan osilator lokal (fo) untuk menghasilkan frekuensi menengah. Terdapat empat sinyal keluaran rangkaian mixer yaitu (fs), (fo), (fs-fo) dan (fo-fs) selain harmonisasinya.
Sinyal menengah IF merupakan selisih antara sinyal osilator lokal (fo) dan sinyal siaran (fs) dapat ditulis secara matematis (fo-fs). Pemilihan ini dilakukan dengan pemasanan filter LC dari trafo IFT1 dan kapasitor. Sinyal keluaran dari tuner diteruskan ke penguat tertala IF untuk dikuatkan sehinga menghasilkan amplitudo yang cukup untuk dideteksi. Penguat tertala artinya penguat yang dapat memberikan penguatan maksimum pada frekuensi tertentu, untuk mencapai frekuensi tertentu tersebut disediakan rangkaian penala L variable, C berupa trafo IFT2, IFT3 dan kapasitor. Disini digunakan penguat IF tertala dua tingkat dimaksudkan untuk mencapai penguatan yang besar disamping lebar bidang datar respon frekuensi yang cukup lebar.
Setelah melalui penguat IF sinyal diteruskan ke rangkaian detektor yang berfungsi untuk memisahkan sinyal informasi dari sinyal pembawa. Melaui pra penguat sinyal dikuatkan untuk selanjuntnya dikuatkan pada penguat daya. Penguat daya yang digunakan jenis puh pull dengan kopling trafo ke beban yang berupa loudspeaker. Loudspeaker berfungsi mengubah besaran listrik menjadi sinyal suara yang dapat didengar.

Tuner Penerima AM

Tuner berfungsi untuk menerima dan mengubah frekuensi pembawa RF menjadi frekuensi menengah, dengan cara mencampurkan frekuensi tinggi sinyal masukan (fs) dan frekuensi osilator lokal (fo). Campuran sinyal ini menghasilkan frekuensi menengah (IF) yang tidak lain adalah selisih dari kedua sinyal masukan. Frekuensi osilator (fo) dapat dibuat lebih kecil atau lebih besar dari pada frekuensi sinyal masukan (fs).

Untuk fo>fs pada tuner AM

465 + (500 sampai 1600) = 965 sampai 2065 kHz. Ini memberikan perbandingan frekuensi Comaks/Comin = (fomaks/fomin)2 = (2065/965)2 = 4,58

Untuk fo<fs pada tuner AM

cakupan frekuensi fs-fo = 465 sehingga cakupan fo adalah -465 + (500 sampai 1600) 35 sampai 1135 kHz sehingga perbandingan Comaks/Comin = (1135/35)2 = 1052 (tidak praktis).
Dengan fo > fs cakupan penalaan kapasitor lebih kecil mudah dicapai dengan kapasitor variable, itulah men            gapa dalam rangkaian tuner digunakan fo>fs.

Jenis Trafo Berdasarkan Kegunaan
Trafo Frekuensi Rendah
Trafo frekuensi rendah bekerja pada frekuensi audio (20Hz-20KHz) atau frekuensi diatasnya yang masih termasuk frekuensi rendah. Ciri khas trafo yang bekerja pada frekuensi rendah umumnya menggunakan inti besi yang lunak, khususnya pada range frekuensi audio. Contoh trafo frekuensi rendah yaitu Trafo Adaptor dan Trafo Output/Input.

Trafo Frekuensi Menengah
Trafo IF (Intermediate Frequncy), hanya bekerja pada frekuensi menengah. Umumnya trafo jenis ini digunakan untuk radio sebagai penerima frekuensi AM/FM. Di dalam trafo ini sudah terdapat lilitan baik primer maupun sekunder yang dirangkai dan di-paralel dengan kapasitor khusus guna keperluan frekuensi menengah untuk menciptakan rangkaian resonansi L-C.
Frekuensi pada trafo ini sudah ter-standarisasi frekuensi menengah yaitu 455KHz untuk keperluan Amplitudo Modulation (AM). Sedangkan untuk keprerluan Frequency Modulation(FM)  juga sudah terstandarisasi frekuensi menengah yaitu 10,7MHz.

Trafo Frekuensi Tinggi
Trafo frekuensi tinggi berfungsi untuk kebutuhan pembangkitan frekuensi (osilator), Flyback (rangkaian televisi tabung), atau lilitan resonansi. Trafo frekuensi tinggi yang digunakan untuk osilator lebih populer dengan sebutan spul osilator. Sedangkan lilitan osilator yang sering digunakan biasanya osilator Hartley dan Coolpits. Trafo frekuensi tinggi juga sering digunakan untuk trafo resonansi. Trafo resonansi sendiri banyak digunakan untuk penyesuaian impedansi antara pemancar dan antena. Oleh karena itu trafo resonansi juga disebut dengan spul antena

Referensi :
[1] Budiyanto, J. 2009. Fisika : Untuk SMA/MA Kelas XII. Pusat Perbukuan, Departemen Pendidikan Nasional, Jakarta. p. 298.



Komentar

Postingan populer dari blog ini

PIPELINING dan RISC

set instruksi

PARALEL PROCESSING